Жизненный цикл звезды

Алан-э-Дейл       15.09.2023 г.

Оглавление

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Интересные факты из жизненных циклов звезд

Жизненный цикл звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей Вселенной находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Путь звезды в зависимости от массы

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.


Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.


Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).


Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.


Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

Последующие этапы эволюции звезд

Каждый из вариантов развития состояния звезды определяется ее массой и отрезком времени, в течение которого происходит трансформация звездной материи. Однако Вселенная представляет собой многогранный и сложный механизм, поэтому эволюция звезд может идти другими путями.

Путешествуя по главной последовательности, звезда с массой, примерно равной массе Солнца, имеет три основных варианта маршрута:

  1. спокойно прожить свою жизнь и мирно почить в бескрайних просторах Вселенной;
  2. перейти в фазу красного гиганта и медленно стареть;
  3. перейти в категорию белых карликов, вспыхнуть сверхновой и превратиться в нейтронную звезду.

Возможные варианты эволюции протозвезд в зависимости от времени, химического состав объектов и их массы

Фаза гиганта и ее особенности

У звезд с небольшой массой плотность ядра становится колоссальной, превращая звездную материю в вырожденный релятивистский газ. Если масса звезды чуть больше 0,26М, рост давления и температуры приводит к началу синтеза гелия, охватывающего всю центральную область объекта. С этого момента температура звезды стремительно растет. Главная особенность процесса заключается в том, что вырожденный газ не имеет способности расширяться. Под воздействием высокой температуры увеличивается только скорость деления гелия, что сопровождается взрывной реакцией. В такие моменты мы можем наблюдать гелиевую вспышку. Яркость объекта увеличивается в сотни раз, однако агония звезды продолжается. Происходит переход звезды в новое состояние, где все термодинамические процессы происходят в гелиевом ядре и в разряженной внешней оболочке.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза

Такое состояние является временным и не отличается устойчивостью. Звездная материя постоянно перемешивается, при этом значительная ее часть выбрасывается в окружающее пространство, образуя планетарную туманность. В центре остается горячее ядро, которое называется белым карликом .

Судьба белого карлика – нейтронная звезда или черная дыра

Оказавшись в состоянии белого карлика, объект пребывает в крайне неустойчивом состоянии. Прекратившиеся ядерные реакции приводят к падению давления, ядро переходит в состояние коллапса. Энергия, выделяемая в данном случае, расходуется на распад железа до атомов гелия, который дальше распадается на протоны и нейтроны. Запущенный процесс развивается со стремительной скоростью. Коллапс звезды характеризует динамический отрезок шкалы и занимает по времени долю секунды. Возгорание остатков ядерного топлива происходит взрывным образом, освобождая в доли секунды колоссальный объем энергии. Этого вполне достаточно, чтобы взорвать верхние слои объекта. Финальной стадией белого карлика является вспышка сверхновой.

Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа).

Оставшееся сверхплотное ядро будет представлять собой скопление протонов и электронов, которые сталкиваясь друг с другом, образуют нейтроны. Вселенная пополнилась новым объектом — нейтронной звездой. Из-за высокой плотности ядро становится вырожденным, процесс коллапсирования ядра останавливается. Если бы масса звезды была достаточно большой, коллапс мог бы продолжаться до тех пор, пока остатки звездной материи не упадут окончательно в центре объекта, образуя черную дыру.

Нормальные звёзды

Звезда образуется, когда большое количество газа (в основном водорода) начинает сжиматься под действием сил гравитации. В процессе сжатия атомы газа всё чаще и чаще сталкиваются друг с другом, двигаясь со всё большими и большими скоростями. В результате газ разогревается до такой степени, что атомы водорода, вместо того, чтобы отскакивать друг от друга, начинают сливаться, образуя гелий. Тепло, выделяющееся в этой реакции, которая напоминает управляемый взрыв водородной бомбы, и вызывает свечение звезды. Из-за дополнительного тепла давление газа возрастает до тех пор, пока не уравновесит гравитационное притяжение. Получается достаточно стабильный горящий шар, в котором выделяющееся в ядерных реакциях тепло уравновешивает гравитационное притяжение.

Но в конце концов водород весь сгорает. Например, Солнце сгорит через 5 млрд лет. А более массивная звезда разогревается сильнее и сгорает быстрее, например, за сто миллионов лет. Дальше звезда может оказаться в нескольких состояниях: стать белым карликом, нейтронной звездой или чёрной дырой.

Эпизод IV. Конец существования звезд и их гибель

Диск звезды Бетельгейзе, снимок телескопа Хаббл

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, белые карлики, нейтронные и черные дыры. Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Слайды и текст этой презентации

Слайд 1

Текст слайда:

Эволюция звезд

Комарова Ирина НиколаевнаПреподаватель астрономии “Красноярский автотранспортный техникум”

Слайд 2

Текст слайда:

Этапы жизни звезд:

Рождение звездМолодые звездыСередина жизненного цикла звездыЗрелость Финальная стадия

Слайд 3

Текст слайда:

Рождение звезды (протозвезная фаза)

Эволюция звезды начинается в гигантском молекулярном облакеГравитационное сжатие облакаГрадиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро Аккре́ция — процесс приращения массы небесного тела путём гравитационного притяжения материи на него из окружающего пространства.

Слайд 4

Слайд 5

Текст слайда:

Молодые звёзды малой массы (до трёх масс Солнца)

сжатие останавливаетсяпостепенное остываниеКоричневые карлики

Слайд 6

Текст слайда:

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)

Нет конвективных зонОни эффективно нагревают и рассеивают остатки протозвёздного облака

Слайд 7

Текст слайда:

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что разгоняют облако прочь. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Слайд 8

Слайд 9

Текст слайда:

Середина жизненного цикла

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Слайд 10

Слайд 11

Текст слайда:

Зрелость

Истощение запаса водорода приводит к остановке термоядерных реакций.звезда снова начинает сжиматьсятермоядерные реакции с участием гелияЗвезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 разСтановятся красными гигантами

Слайд 12

Текст слайда:

Красные гиганты

Слайд 13

Текст слайда:

Старые звёзды с малой массой

Красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Слайд 14

Текст слайда:

Звёзды среднего размера

начинаются реакции синтеза углерода из гелия (миллиард лет)Изменения (размера, температуры поверхности и выпуск энергии)1) белый карлик2) нейтронная звезда (пульсар)3) чёрная дыраВ двух последних ситуациях эволюция звёзды завершается катастрофическим событием — вспышкой сверхновых.

Слайд 15

Текст слайда:

Белые карлики

Белые карлики представляют собой компактные звёзды с массами, сравнимыми или большими, чем масса Солнца, но с радиусами в 100 раз меньшими

Слайд 16

Текст слайда:

Нейтро́нная звезда́ — космическое тело, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов.

Слайд 17

Текст слайда:

Черная дыра

Чёрная дыра́ — область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света.

Слайд 18

Текст слайда:

Сверхмассивные звёзды

Синтезируются всё более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.Взрыв сверхновой звезды невероятной мощности

Слайд 19

Пять веков Вселенной

Астрономы считают, что пять этапов эволюции являются удобным способом представления невероятно долгой жизни Вселенной. Согласитесь, во времена, когда нам известно всего 5% о видимой Вселенной (остальные 95% занимает таинственная темная материя, существование которой только предстоит доказать), судить об ее эволюции довольно сложно. Тем не менее, исследователи пытаются понять прошлое и настоящее Вселенной, объединив достижения науки и человеческой мысли двух последних столетий.

Если вам посчастливилось оказаться под ясным небом в темном месте безлунной ночью, то при взгляде вверх вас ждет великолепный космический пейзаж. С помощью обычного бинокля можно увидеть умопомрачительное небесное полотно из звезд и пятен света, которые накладываются друг на друга. Свет от этих звезд достигает нашей планеты преодолевая огромные космические расстояния и пробивается к нашим глазам через пространство–время. Такова Вселенная космологической эпохи, в которой мы живем. Она называется звездная эрой, но есть еще четыре других.

]]>

]]>

Изображение составлено исследователями Принстонского университета, основываясь на снимках, полученных космическими телескопами NASA

Существует множество способов рассмотреть и обсудить прошлое, настоящее и будущее Вселенной, но один из них больше других привлек внимание астрономов. Первая книга о пяти веках Вселенной была опубликована в 1999 году, под названием «Пять веков Вселенной: внутри физики вечности»

(последние обновления внесены в 2013 году). Авторы книги Фред Адамс и Грегори Лафлин дали название каждому из пяти веков:

  • Первобытная эра
  • Звездная эра
  • Дегенеративная эра
  • Эра Черных Дыр
  • Темная эра

Необходимо отметить, что далеко не все ученые являются сторонниками этой теории. Тем не менее, многие астрономы находят разделение на пять этапов полезным способом обсуждения столь необычайно большого количества времени.

Как долго живут звёзды

Нас окружают звезды самого разного возраста. Солнце — сравнительно старая звезда, как и планеты, вращающиеся вокруг него. По оценкам геологов, возраст Земли — около 4,5 млрд. лет, возраст Солнца должен быть не меньшим. Возраст абсолютного большинства звезд нашей Галактики — такой же, как у Солнца, или больше. В то же время многие звезды образовались совсем недавно, а некоторые давно закончили свой жизненный путь. Процесс рождения и умирания звезд непрерывен.

Массивные звезды эволюционируют намного быстрее, чем звезды малых масс. Звезда очень большой массы успевает пройти весь свой жизненный путь и стать сверхновой за тот период, которого самым легким звездам хватает лишь для того, чтобы прийти на главную последовательность. Соотношение возраста и отпущенного звезде времени жизни можно рассматривать как показатель молодости или старости звезды. Самые молодые звезды мы наблюдаем в областях звездообразования, близ ярких газовых туманностей. Они находятся на стадии образования или только что образовались из газовой среды, «проклюнулись» из непрозрачных околозвездных «коконов», на их поверхность продолжает падать газовое вещество из окружающего пространства. Эти активные процессы проявляются в переменности блеска молодых звезд. Особенно точно определяется возраст звездных скоплений. Звездное скопление — это группа звезд различной массы, которые сформировались практически одновременно из вещества с почти одинаковым содержанием химических элементов.

Сравнив диаграмму Герцшпрунга — Рассела звездного скопления с теоретической последовательностью, т.е. последовательностью, которую должны образовывать на этой диаграмме звезды разной массы, но одного возраста и химического состава, астрофизики могут оценить возраст скопления.

У очень молодых звездных скоплений (с возрастом около 1 млн. лет) правая нижняя часть наиболее «населенной» последовательности диаграммы Герцшпрунга — Рассела проходит выше теоретической главной последовательности. Это результат того, что самые маломассивные звезды молодых скоплений еще не достигли эволюционного этапа главной последовательности и только приближаются к ней справа. У более старых скоплений (десятки миллионов лет) становится заметным загиб вправо верхнего конца главной последовательности. Масса звезд вдоль главной последовательности убывает сверху вниз. Самые массивные звезды рассматриваемых скоплений уже завершают эволюционную стадию главной последовательности и начинают уходить с нее вправо. Место этого загиба обычно называют точкой поворота главной последовательности. Чем старше скопление, тем дальше точка поворота сдвигается вправо вниз (в сторону меньшей светимости и более низкой температуры поверхности звезд). У самых старых шаровых скоплений (около 10 млрд. лет и больше) на главной последовательности вообще нет ярких горячих звезд. Теоретики предсказывают, что Солнце останется на главной последовательности еще примерно 5— 6 млрд. лет, и если в шаровых скоплениях звезды солнечного типа уже отсутствуют на главной последовательности, значит, возраст таких скоплений (и возраст населяющих их звезд) должен превышать 10 млрд. лет.

Звездные параметры

Молодые звезды имеют практически одинаковый состав веществ. Это 73% водорода, 25% гелия и 2% металлических веществ (в астрономии к ним относят все, что не является водородом и гелием). Именно эти два процента и масса объекта имеют огромное значение и делают звезды такими разными. Они влияют на протекание РТС в ядре и металличность звезд. От этого зависят и все другие параметры. К ним относятся:

  • Масса и радиус — вычисляются астрономическими методами, как и расстояние до звезды.
  • Светимость — обозначается в цифрах по отношению к солнечной.
  • Цвет зависит от типа и диапазона испускаемых волн.
  • Спектральные классы, по которым можно узнать о химическом составе и температуре поверхности.

На возможность появления планет у светила или в звездной системе влияет металличность звезды. В науке используется также понятие абсолютной звездной величины, которая характеризует интенсивность потока звездного излучения. Поскольку расстояния до светил отличаются миллионами световых лет, то очень далекая звезда высокого класса может быть почти невидимая с Земли, а близкая, но слабая ярко сиять на небе. Поэтому при наблюдениях используется и такое понятие, как видимая звездная величина.

Пульсары и нейтронные звезды

Когда жизнь звезды заканчивается, на ее месте образуется уникальное космическое тело – нейтронная звезда. Это компактные астрономические объекты, радиус которых не превышает 10 километров. А масса нейтронной звезды составляет около 1,4 массы Солнца. Состоят такие объекты в основном из нейтронов. Эти звезды относятся к самым интересным астрофизическим объектам.

Вещество, из которого состоят эти тела, имеет сверхпроводимость, сверхтекучесть, излучение нейтрино, наличие сверхсильных магнитных полей и прочее. Просто огромна и плотность нейтронной звезды. Именно поэтому она при небольших размерах имеет невероятную массу. Строение нейтронной звезды ни на что не похоже. Внутри нее кипит раскаленное вещество, заключенное в тонкую твердую оболочку, над которой бушует горячая плазма. Это тело имеет магнитное поле, которое превосходит солнечное в триллионы раз.

То, что во Вселенной могут существовать макрообъекты, состоящие в основном  из нейтронов, доказал еще академик Л.Д.Ландау. Предположение о том, что нейтронные звезды рождаются во вспышках сверхновых, было сделано в 1934 году американскими учеными Ф. Цвикки и В.Бааде. Но, учитывая их небольшую светимость, обнаружить нейтронные звезды длительное время не удавалось. Такие тела имеют и другое название – пульсары. Их магнитные поля постоянно захватывают электроны из слоя плазмы, которые в результате начинают излучать радиосигналы.

Впервые такие радиоимпульсы были пойманы из определенных участков неба английскими учеными из Кембриджа в 1967 году. В ходе изучения мерцаний космических радиоисточников Д.Белл, работавшая под руководством Э.Хьюшина (первооткрыватель пульсаров, Лауреат Нобелевской премии в области физики за 1974 год), обнаружила строго периодический сигнал. Тогда некоторые исследователи решили, что имеют дело с сигналами внеземной цивилизации. Поэтому работы в данном направлении были засекречены. В дальнейшем было доказано, что это обычное природное явление.

Данные, полученные группой Хьюшина, стали известны другим ученым. И скоро исследователи пришли к выводу, что радиопульсары и нейтронные звезды обозначают одно и то же понятие. Самое интересное, что нейтронные звезды ученые наблюдали еще за пять лет до открытия радиопульсаторов. Вот только сделать это помогли не радиоволны, а рентгеновские лучи.

В 1962 году ученые установили на ракете специальный детектор и с его помощью смогли обнаружить достаточно мощный источник рентгеновского излучения в созвездии Скорпиона. С Земли подобные исследования провести не удавалось, поскольку рентгеновские лучи поглощаются нашей атмосферой.

 В 1970 году специалистам был известен уже целый ряд подобных объектов. Причем все они входили в состав двойных тесных систем и забирали себе часть вещества нейтронной звезды, которая находилась по соседству. В этом случае вещество приобретает скорость, близкую к скорости света, и при столкновении с поверхностью нейтронной звезды переходит в тепло (температура достигает нескольких миллионов градусов), которое и излучается в рентгеновском диапазоне.

Современной науке известны интересные тесные двойные системы, состоящие из двух нейтронных звезд. За счет гравитационных волн они довольно быстро сближаются.

В итоге за время, меньше возраста Вселенной, они должны слиться, выделив при этом колоссальное количество энергии, намного превосходящее энергию взрыва сверхновой звезды. За одной из таких систем и наблюдали в 1970 году Р. Халс и Жд.Тейлор, которые за результатами своей работы были удостоены Нобелевской премии в области физики.

Столкновение двух нейтронных звезд Источник

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Примечания

  1. Институт физики им. Киренского СО РАН | Строение и эволюция вселенной
  2. Шкловский И. С. Звёзды: их рождение, жизнь и смерть. — М.: Наука, Главная редакция физико-математической литературы, 1984. — 384 с. (см. ISBN )

  3. ↑ Burrows, A., Hubbard, W. B., Saumon, D., Lunine, J. I. An expanded set of brown dwarf and very low mass star models // The Astrophysical Journal : рец. науч. журнал. — 1993. — Т. 406. — № 1. — С. 158-171. — См. С. 160.
  4. ↑ Fred C. Adams; Gregory Laughlin (U. Michigan) (1997). «A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects». arΧiv:astro-ph/9701131 .  (англ.) — См. С. 5. (По поводу срока пребывания на главной последовательности: См. С. 5. — формула (2.1a): , где для звёзд малой массы берётся значение α ≈ 3 — 4.)
  5. ↑ Paul A. Crowther, Olivier Schnurr, Raphael Hirschi et al. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit // Monthly Notices of the Royal Astronomical Society : рец. науч. журнал. — 2010. — Т. 408. — № 2. — С. 731-751.. — arΧiv:1007.3284.
  6. Paul Crowther, Olivier Schnurr, Henri Boffin. A 300 Solar Mass Star Uncovered (англ.). ЕЮО (21 July 2010). — Обнаружена звезда массой 300 солнечных (Mon. Not. R. Astron. Soc.  (англ.)). Проверено 10 января 2012. Архивировано из первоисточника 4 мая 2012.
Гость форума
От: admin

Эта тема закрыта для публикации ответов.