Небесные тела

Алан-э-Дейл       05.11.2022 г.

Содержание:

Возраст Вселенной 13,8 миллиарда лет, а диаметр около 93 миллиардов световых лет. Короче говоря, Космос — это все, что было, есть и будет. А его обширность означает, что мы не только далеки от знания даже небольшой части его секретов, но и являемся домом для удивительных и часто устрашающих астрономических тел.

И дело в том, что Вселенная состоит из более чем 2 миллионов миллионов галактик, которые, в свою очередь, образованы гравитационным сцеплением между различными астрономическими объектами, составляющими их. Все в Космосе основано на гравитации. И это тела с массой, которые допускают существование этой гравитации.

Но сколько существует различных типов небесных тел? Много. Достаточно подумать о необъятности Вселенной, чтобы понять, что разнообразие объектов, составляющих Вселенную, просто невообразимо. Но в сегодняшней статье мы постараемся дать глобальное видение этого.

Приготовьтесь отправиться в путешествие по Вселенной, чтобы найти основные типы небесных тел, из которых она состоит.. От черных дыр до астероидов, проходящих через нейтронные звезды, планеты, кометы или квазары — мы будем поражены объектами, населяющими Вселенную.

Мы рекомендуем вам прочитать: (10 крупнейших астрономических объектов во Вселенной)

Разделы астрономии

Астрономия включает несколько более узких разделов:

  1. Космология: изучает Вселенную, образование, состав, развитие.
  2. Космогония: изучает космические тела — звёзды, галактики и т. д.
  3. Астрофизика: изучает уже небесные тела и атмосферу (не только Земли, но и других планет).
  4. Небесная механика: изучает небесные тела с помощью законов механики.
  5. Астрометрия: измеряет расположение космических тел в пространстве, изучает изменение их положения.
  6. Галактическая и внегалактическая астрономия: первый раздел изучает только одну галактику — Млечный путь, второй — другие галактики; и другие разделы.

Читайте подробнее про Галактику.

Семейства и виды

Кометы вращаются вокруг Солнца по орбитам. Ближайшая к этой звезде точка на орбите называется перигелием. Если она находится на малом расстоянии от Солнца, тогда комета входит в группу околосолнечных. В этой группе насчитывается несколько семейств:

  • Крейца;
  • Крахта;
  • Марсдена;
  • Майера.

Семейство Крейца является самым крупным и включает в себя более 80% всех околосолнечных комет. Его представители считаются частями одной большой кометы, распавшейся несколько столетий назад. В зависимости от количества прохождений перигелия выделяют два вида комет:

  • короткопериодические (проходят более одного раза или имеют период меньше 200 лет);
  • долгопериодические (не более одного прохождения перигелия и период больше 200 лет).

Одна из наиболее известных больших комет носит имя открывшего её в 2006 году астронома Макнота. Она была самой яркой за последние четыре десятилетия.

Кроме того, существуют небесные тела, имеющие характеристики и особенности как комет, так и астероидов, и попадающие в списки и тех и других. Одним из семи таких тел является Хирон, открытый в 1977 году. Его название прекрасно отражает двойственную природу космического объекта, ведь Хирон, согласно фессалийской мифологии, являлся кентавром — получеловеком и полуконём.

Звезда преонов

Мы начнем стильно с одного из самых странных небесных тел (если не самого) во Вселенной. Мы сталкиваемся с типом гипотетической звезды (ее существование не подтверждено) невероятно маленького размера, примерно размером с мяч для гольфа.. Теоретически эти астрономические тела образовались бы после смерти и последующего гравитационного коллапса звезды, достаточно большой, чтобы дать начало черной дыре, но которая осталась у ворот.

В этом смысле гравитационный коллапс не создает сингулярности (которая является причиной рождения черной дыры), но вызывает разрушение субатомных частиц (включая кварки протонов и нейтронов), после чего исчезают внутриатомные расстояния и возникают невероятно высокие плотности. может быть получен.

Кубический метр преонов звезды будет весить около квадриллиона килограммов. Но помните, что его существование не доказано. Если бы они существовали, то были бы самыми маленькими астрономическими телами во Вселенной (возможное объяснение того, почему их невозможно увидеть с Земли), поскольку целая звезда была бы сжата в нечто размером с яблоко.

Рекомендуем прочитать: «10 самых плотных материалов и объектов во Вселенной»

Страница 54-55. Шестиногие и восьминогие.

1. Как называются эти насекомые? Впиши в кружочки номера их названий.

См. фото.

2. Вырежи картинки из приложения и составь схемы превращения насекомых. Закончи подписи.

Схема превращения насекомых.

Яйца — личинка — стрекоза. Яйца — гусеница — куколка — бабочка.

3. Найди в этом ряду лишний рисунок и обведи его. Объясни (устно) свое решение.

Ответ: Лишний паук. У него 8 ног и он относится к паукообразным, а у остальных на картинке 6 ног, это насекомые. 4. Напиши рассказ о насекомых, которые тебя заинтересовали или о пауках. Используй сведения из атласа-определителя, книги «Зелёные страницы! или «Великан на поляне» (по своему выбору).

Муравьи.

Возле нашей дачи, в лесу есть несколько больших муравейников. Муравьи трудятся целый день, они собирают семена и мертвых животных. А еще муравьи пасут тлю. Они хлопают тлю по спинке, и та выделяет капельку сладкой жидкости. Эта жидкость и привлекает муравьев. Они любят сладкое.

Определение названия

В среднем в XXI веке ежегодно обнаруживается около 30 комет, которые называют в честь первооткрывателей. Этим правом обладает Международный астрономический союз. Если несколько сообщений поступают одновременно, комета получает двойное имя, как в случае с Хейл-Боппа.

Тела классифицируются, помимо имени первооткрывателя, если таковой имеется, буквенными и цифровыми обозначениями:

  • номер года открытия;
  • прописная латинская буква, каждая из которых обозначает полмесяца.
  • арабское число, которое указывает порядок открытий в течение полугода.

Например, 1997 А1 — первая комета, найденная в 1997 году между 1 и 15 января.

Смотрите это видео на YouTube

Если путь небесного тела сложно рассчитать, перед обозначением времени открытия добавляется одна из следующих букв:

  • P — периодическая комета с обращением до 200 лет, наблюдалась как минимум 2 периферических прохода;
  • C — орбитальный период более 200 лет, «непериодическая» по определению;
  • X — орбита не определена;
  • D — периодическая, потерянная или больше не существующая.

Комета Хейл-Боппа имеет обозначение C / 1995 O1, ее орбитальный период почти 3000 лет, намного выше предела 200 для периодических тел.

Описание

Файл:Solar sys8.jpg

Модель Солнечной системы

Файл:Halebopp031197.jpg

Комета Хейла — Боппа

Размеры небесных тел разные — от огромных до крошечных. Самыми большими являются, как правило, звёзды, самыми маленькими — метеориты. Небесные тела объединяют в системы в зависимости от того, что эти тела собой представляют.

Небесное тело Система Пример
Планеты Звёздные системы Солнечная система
Астероиды Астероидные пояса Пояс в Солнечной системе (между орбитами Марса и Юпитера)
Звёзды Галактики Галактика «Млечный путь»
Кометы Кометные пояса (пояса с «замёрзшими камнями») Пояс Койпера

На верхнем изображении справа от таблицы показана модель Солнечной системы. Она состоит из звезды (Солнца), вокруг которой по орбитам передвигаются планеты. Вокруг некоторых планет, как, например, вокруг Земли, оборачиваются природные спутники, которые так же являются небесными телами. Между орбитами Марса и Юпитера существует астероидный пояс, состоящий из отдельных тел — астероидов, которые также вращаются вокруг Солнца. Существует гипотеза, что он возник из-за того, что в Солнечной системе была ещё одна планета, которая прекратила своё существование (по другой теории это наоборот несформировавшаяся планета). Некоторые планеты (как Сатурн) имеют пылевые кольца, которые двигаются вокруг этих планет по орбитам. Эти кольца можно сравнить с вышеупомянутым астероидным поясом, только в данном случае вокруг планеты оборачиваются тела, размеры которых гораздо меньше, чем размеры астероидов.

С. 50-51. Чудесные цветники осенью

3. Определите несколько растений осенних цветников. Запиши их названия.

Определяем по атласу определителю Плешакова.

Ответ: хризантемы, астры, георгины, рудбекия, гелениум, декоративная капуста.

Фото для вклейки:

Георгина

1. Легенда рассказывает о том, как появился на земле цветок георгина. Георгина появилась на месте последнего костра, который угас при наступлении ледникового периода. Этот цветок первым пророс из земли после прихода тепла на землю и своим цветением ознаменовал победу жизни над смертью, тепла над холодом.

2. В далекие времена георгина не была так распространена, как теперь. Тогда она была лишь достоянием царских садов. Никто не имел права вынести или вывезти георгину из дворцового сада. В том саду трудился молодой садовник по имени Георгий. И была у него возлюбленная, которой и подарил он однажды прекрасный цветок – георгину. Он тайком вынес росток георгины из царского дворца и весной посадил его у дома своей невесты. Это не могло оставаться тайной и до царя дошли слухи о том, что цветок из его сада теперь растет и за пределами его дворца. Гневу царя не было предела. По его указу садовник Георг был схвачен стражей и посажен в тюрьму, откуда ему не суждено было выйти никогда. А георгина с тех пор стала достоянием всех, кому пришелся по душе этот цветок. В честь садовника и был назван этот цветок – георгина.

Календарь — хранитель времени, страж памяти

Страница 26 — 27

1. Рассмотри, как устроена страничка отрывного календаря. По ее образцу оформи справа страничку календаря «Мой день рождения».

Придумай устный рассказ о себе для оборотной странички календаря.

2. Подпиши названия времён года в центре календарного круга. Раскрась подходящими цветами каждую часть круга, выделенную красными линиями. Объясни (устно), почему тобой выбраны именно эти цвета для каждого из сезонов.

3. Определи по календарному кругу, на какие месяцы приходятся дни рождения твоих близких. В рамках запиши их имена. А в кружках обозначь числа семейных праздников. 4. Отгадай загадки. Запиши отгадки. Проверь ответы в Приложении.

Дней прибывает,                            Двенадцать братьев
А сам убывает.                             Друг за другом ходят, 
(Отрывной календарь)                       Друг друга не обходят.
                                           (Месяцы)

Радиолокационный метод в астрономии

Определение

Радиолокационная астрономия является разделом астрономии, в рамка которого изучают небесные тела с помощью отправки к ним зондирующего радиосигнала и анализа отраженного радиоэха.

В процессе исследований комплекс, включая передатчик, антенну и приемник, то есть радиолокатор или радар, размещают на нашей планете или устанавливают на космический аппарат. Радиолокационная астрономия отличается от радиоастрономии изучением не собственного радиоизлучения небесных тел, а отраженных от них сигналов.

Метод отличается удобством, так как при измерении времени, в течение которого сигнал преодолевает путь туда и обратно, можно достаточно точно рассчитать расстояние до объекта, а в зависимости от того, как изменяется частота сигнала легко определить скорость объекта по принципу Доплера. Однако из-за быстрого убывания мощности отраженного сигнала по мере увеличения расстояния, ученым удается исследовать радиолокационным методом только тела, расположенные в Солнечной системе.

В 1961 году исследователи в Англии, СССР и США практически в одно и то же время использовали локацию Венеры, чтобы измерить расстояние до нее. Повторный эксперимент в 1964 году позволили значительно увеличить точность измерений с погрешностью в несколько километров. Применение современных радаров позволяет проводить также локацию Солнца, Меркурия, Марса, Юпитера с галилеевыми спутниками, Сатурна с кольцами и спутником Титаном, астероидов и ядер комет. Далее небесные тела стали исследовать, применяя космические зонды. Однако локация все еще остается эффективным методом проведения астрономических исследований. К данной методике была добавлена лазерная локация Луны, при которой использовали отражатели оптических импульсов, размещенных на ее поверхности. Таким образом, можно регулярно определять расстояние между нашей планетой и Луной с точностью до 1 сантиметра, что помогает в изучении сложного относительного перемещения этих двух объектов.

Примечание

Самый крупный в мире радиотелескоп, диаметр которого составляет 305 метров, расположен в обсерватории Аресибо на острове Пуэрто-Рико.

Древние времена

С самого начала человеческой эпохи Луна и звезды приковывали к себе внимание. И первой даже поклонялись жрецы различных культов, впрочем, как и Солнцу

А в Средние века первые астрономы уже понимали, что Земля вовсе не плоская, не покоится на трех китах или черепахах, а вокруг нас есть и другие планеты, так называемые небесные тела. Так что же это такое?

Для начала определимся с официально принятой терминологией, согласно которой подобные объекты — это части планетных систем, имеющих в своем центре звезду (или несколько), вокруг которых они и вращаются. Наша называется Солнечной, по имени центральной звезды. На ее примере мы и разберем, что такое небесные тела.

Стр. 64-65. Будь здоров.

1. Нарисуй, в какие игры ты любишь играть летом и осенью. Вместо рисунков можно приклеить фотографии.

Летние и осенние игры: догонялки, салки, прятки, футбол, вышибалы, кондалы, бадминтон, для девочек — резиночка, классики.

2. Подумай и запиши, какие качества развивают игры, в которые ты любишь играть летом и осенью.

Ответ: ловкость, силу, смекалку, смелость, внимательность, настойчивость.

3. Попроси старших в семье рассказать об одной из игр нардов вашего края. Вместе опишите ход игры. Дайте ей название…

ИГРА «Высокий дуб»

В эту игру играли на Руси еще наши бабушки и дедушки, ее название сохранилось с 50-х годов прошлого столетия. Для игры нужен один мяч. Играют от 4-х до 30-ти (или более) детей.

Все становятся в круг. Внутри круга стоит один человек с мячом. Он подбрасывает мяч высоко вверх над собой и выкрикивает имя одного из игроков, например: «Люба!». Все дети (в том числе и тот, кто подбрасывал мяч) разбегаются врассыпную. Люба должна подхватить мяч и бросить в кого-нибудь из ребят. В кого попали, тот следующим подбрасывает мяч.

Играют до тех пор, пока не надоест.

Какие качества развивает эта игра: быстроту реакции, меткость, быстроту бега, ловкость.

Классификация небесных тел Солнечной системы

  • Силикатные небесные тела. Данная группа небесных тел именуется силикатной, т.к. основным компонентом всех ее представителей являются каменно-металлические породы (около 99% от всей массы тела). Силикатная составляющая представлена такими тугоплавкими веществами, как кремний, кальций, железо, алюминий, магний, сера и др. Присутствуют также ледяные и газовые компоненты (вода, лед, азот, углекислота, кислород, гелий водород), однако их содержание мизерное. К этой категории относятся 4 планеты (Венера, Меркурий, Земля и Марс), спутники (Луна, Ио, Европа, Тритон, Фобос, Деймос, Амальтея, др), более миллиона астероидов, обращающихся между орбитами двух планет — Юпитера и Марса (Паллада, Гигея, Веста, Церера и др.). Показатель плотности — от 3 грамм на кубический сантиметр и более.
  • Ледяные небесные тела. Эта группа является самой многочисленной в Солнечной системе. Основная составляющая — ледяная компонента (углекислота, азот, водяной лед, кислород, аммиак, метан и др.). В меньшем количестве присутствует силикатная компонента, а объем газовой крайне незначительный. Эта группа включает одну планету Плутон, крупные спутники (Ганимед, Титан, Каллисто, Харон и др.), а также все кометы.
  • Комбинированные небесные тела. Составу представителей данной группы присуще наличие в больших количествах всех трех компонент, т.е. силикатной, газовой и ледяной. К небесным телам с комбинированным составом относится Солнце и планеты-гиганты (Нептун, Сатурн, Юпитер и Уран). Эти объекты характеризуются быстрым вращением.

«Лунный заговор»

Популярная теория заговора, сторонники которой утверждают, что американские астронавты не высаживались на Луне в ходе шести миссий космической программы «Аполлон». Фотографии и кинохроника не убеждают их в обратном: считается, что фото и видео сфабрикованы, частично или полностью.

Фото: wikipedia.org

В июле 2020 ВЦИОМ провел опрос. Выяснилось, что в высадку американцев на Луне в 1969-72 годах не верят 49% россиян. Еще 2% считают, что Земля плоская.

При этом одна из первых публикаций с сомнениями насчет высадки вышла именно в США: 18 декабря 1969 года, в газете The New York Times. Позже вышла книга математика Дж. Крайни «Разве человек высадился на Луну?» с расчетами, опровергающими высадку. А затем и другие: «Мы никогда не были на Луне» Билла Кейснга и «Как NASA показало Америке Луну» Ральфа Рене.

Главные аргументы сторонников «Лунного заговора»:

  • Прыжки астронавтов по поверхности Луны выглядят так, как будто это происходит на Земле.
  • Американский флаг не может развеваться, как на видео, ведь на Луне нет кислорода.
  • На фото над Луной не видно звезд, хотя никакие облака не могли их скрыть.
  • Тени на снимках лежат в разных направлениях или не видны вовсе, хотя источник света был всего один.
  • С развитием технологий на фотографиях стали находить детали, которые можно трактовать как следы фотомонтажа и ретуши.

Эксперты утверждают также, что уровень технологий NASA на тот момент не позволял совершить подобный полет. Был и мотив для фальсификаций: в 1970-е годы между США и СССР шла холодная война, которая сопровождалась гонкой вооружений. Так что показать свое первенство и передовые технологии в космосе было не только вопросом престижа, но и политической необходимостью.

Опасны ли космические лучи для человека?

Хоть частицы из космоса могут выводить из строя технику на орбите, для человека они не представляют особой опасности.

Человечество от космических лучей надежно защищает атмосфера Земли и Солнце. Чем выше активность Солнца, тем меньше космических лучей попадает к нам из Галактики и внегалактического пространства.

Впрочем, некоторое количество радиации из космоса попадает на Землю: космические лучи все-таки создают небольшой уровень радиоактивности. Однако даже регулярные авиаперелеты, если вы не член экипажа и не летаете ежедневно, не слишком вредят здоровью. Более того, краткосрочное радиоактивное облучение не нанесет существенный урон даже космическим туристам.

Скорее, опаснее была бы обратная история: если бы космических лучей вдруг не стало. Это привело бы к эффекту дистиллированной воды, то есть полному исчезновению естественного радиоактивного фона. Такое обстоятельство, конечно, уменьшило бы количество мутаций в нашей ДНК, но, как известно, мутации бывают не только вредными, но и полезными. В конце концов, это важная часть человеческой эволюции.

Метод триангуляции в астрономии

Определение

Космическая триангуляция — является способом построения геодезических сетей, в основе которого лежит определение относительного положения пунктов по одновременным наблюдениям с них искусственных спутников Земли (ИСЗ).

Возможности космической триангуляции:

  • определение координат удаленных пунктов;
  • связывание местных геодезических сетей, которые отделяют друг от друга океаны и моря, в общую сеть;
  • развитие сплошных сетей с целью обеспечить обширные территории общей координатной системой и создать сети пунктов с определенной плотностью.

Примечание

С 60-х годов XX века ученые в США практикуется построение геодезических сетей с помощью метода космической триангуляции. Таким образом, местные сети объединяют в общую глобальную геодезическую сеть. К 1977 году определение положения пунктов в этой системе становится более точным и характеризуется среднеквадратичной погрешностью в 3 метра (по координатам).

Пункты геодезической сети, которые построены на основе триангуляции, могут являться основой для исследований внешнего гравитационного поля и фигуры нашей планеты, а также применяются в космических навигационных системах. Данный метод реализуют с применением искусственных спутников Земли, которые обладают почти круглыми орбитами:

  • при использовании отраженного от поверхности спутника солнечного света применяют пассивные ИСЗ;
  • аппаратуру, подающую световые или радиосигналы с привязкой к системе точного времени, устанавливают на борту активных ИСЗ.

Искусственные спутники Земли оснащают уголковыми отражателями, с помощью которых проводят лазерно-дальномерные измерения. Аппаратура для наблюдения за ИСЗ отличается высокой точностью измерений. Востребованы оптические установки, благодаря которым достаточно просто получать фотографии спутников на фоне звездного неба. 

Первые измерения удаленности Земли от Солнца были выполнены Аристархом Самосским, который применил в исследованиях астрономические методы. Анализ данных его вычислений позволяет делать вывод о том, что радиус Земли примерно в семь раз меньше, чем радиус Солнца. Это заключение натолкнуло Аристарха Самосского на идею расположения Солнца в центре мира, как большего тела, чем Земля. Полученные греческим ученым результаты далеки от реальных параметров, но тенденция соответствует действительности.

Метод триангуляции первым применил Снеллиус в 1615 году, измеряя дуги меридиана в Голландии. С того времени в разных странах и на разных широтах было измерено множество дуг на поверхности Земли.

Пример

Метод триангуляции основан на ряде вычислений. Предположим, что имеется некая дуга \(O_{1}O_{2}\). Требуется вычислить ее длину. Около данной дуги имеются точки А, В, С, D, Е, …, удаленные приблизительно на 40 километров друг от друга. Рассматриваемые точки расположены, таким образом, чтобы из каждой просматривались, как минимум, пара других точек. В каждую точку монтируются геодезические вышки с платформами для наблюдения. В качестве базиса принимается отрезок \(O_{1}A\), соединяющий две точки и пролегающий по достаточно ровной поверхности. Длина этого базиса измеряется с максимальной точностью с применением мерной ленты. Далее наблюдателю с вышки необходимо определить углы треугольников  \(O_{1}AB\), ABC, BCD… Обладая информацией об углах и базисе треугольника \(O_{1}AB\), легко определить другие его стороны \(O_{1}B\) и АВ. Вычислив сторону АВ и углы треугольника АВС, можно найти стороны АС и ВС. Таким образом, пошагово определяют длину ломаной линии \(O_{1}BDO_{2}\). Вычислив из точки \(O_{1} \)азимут направления отрезка \(O_{1}A\), необходимо построить проекцию ломаной линии \(O_{1}BDO_{2}\) на меридиане \(O_{1}O_{2}\). В результате будут получены линейные размеры дуги \(O_{1}O_{2}\).

Метеороиды

Данным термином обозначают малые тела, которые по своим размерам находятся в промежутке между космической пылью и астероидами. Упав на Землю, метеороид становится метеоритом, а след, который виден  на небе при его входе в земную атмосферу, называется метеором. Такое явление известно всем, как «падающая звезда».

Долгое время не утихали споры по поводу того, малые тела каких размеров можно отнести к метеороидам. На сегодняшний момент принято считать, что диаметр «падающих звезд» должен быть не менее 10 мкм и не более 1 метра. При этом они могут быть первичными, возникшими как самостоятельные объекты, и вторичными, образовавшимися при столкновении более крупных объектов.

По составу метеороиды бывают металлические, минеральные и смешанные. В образовавшихся из них метеоритах нередко находят следы органических веществ. На Землю они попадают чаще всего из пояса астероидов между Марсов и Юпитером.

Комета

Кометы — это астрономические тела, средний размер которых составляет около 10 километров в диаметре. вращаться вокруг Солнца по сильно эксцентричным орбитам со скоростью до 188000 километров в час.. Всего в Солнечной системе зарегистрировано 3153 кометы (у других звезд во Вселенной, конечно, тоже есть), и их знаменитый «хвост» связан с тем, что, когда они приближаются к Солнцу, ионизирующая энергия указанной звезды вызывает газ кометы ионизируется, поэтому она излучает собственный свет. Хвост может достигать размеров от 10 до 100 миллионов километров.

Рекомендуем прочитать: «8 типов воздушных змеев (и их характеристики)»

История изучения

Издревле кометы считались предвестниками роковых событий, а древние греки изображали небесных гостий в виде отрубленных голов с развевающимися волосами.

Тихо Браге первым определил комету как самостоятельное небесное тело.Сделал он это в 1577 году, а Эдмунд Галлей основательно доказал, что комета, приблизившаяся к Земле в 1682 году, летит по орбите, имеющей форму эллипса. Галлей составил каталог из 24-х кометных объектов, появлявшихся за 300 лет. Он же установил, что три кометы – 1531, 1607 и 1682 годов – это один и тот же объект с периодичностью появления в 75,5 лет. Был предсказан следующий визит космической гостьи – 1758 год. Это свершилось в 1759 году, заодно подтвердив закон всемирного тяготения, положенный в основу расчётов параметров орбиты.

Как космические лучи помогают изучать Солнце

Поскольку интенсивность потока космических лучей тесно связана с солнечной активностью, с их помощью ученые могут изучать Солнце на масштабе многих сотен световых лет. Для этого есть два способа:

  1. Космические лучи провоцируют появление новых химических элементов (например, бора и бериллия) — они образуются в результате реакции скалывания из ядер других элементов, прилетевших на Землю.
  2. Частицы космических лучей взаимодействуют с веществом атмосферы и рождают редкие изотопы. Эти изотопы оседают на поверхность, и ученые могут обнаруживать их во льду или в спилах деревьев.

Экономика инноваций

Какие секреты Солнца стали известны после космической миссии NASA

Знакомство с Солнечной системой

Солнечная система является частью спиралевидной галактики — Млечного пути. В самом ее центре находится Солнце – самый большой обитатель Солнечной системы. Солнце – это горячая звезда, состоящая из газов – водорода и гелия. Оно производит огромное количество тепла и энергии, без которых жизнь на нашей планете была бы просто невозможна. Солнечная система возникла пять млрд. лет назад в результате сжатия газопылевого облака.

Млечный путь

Центральное тело нашей планетной системы — Солнце (по астрономической классификации — желтый карлик), сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 100), малыми планетами — астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов — метеороидов и космической пылью. Все эти объекты объединены в общую систему мощной силой притяжения превосходящей массы Солнца.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет.

Фундаментальной особенностью строения Солнечной системы является то, что все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран и Плутон, осевое вращение которых противоположно солнечному. Существует корреляция между массой планеты и скоростью осевого вращения. В качестве примеров достаточно упомянуть Меркурий, сутки которого составляют около 59 земных суток, и Юпитер, который успевает сделать полный оборот вокруг своей оси менее, чем за 10 часов.

Планеты солнечной системы

Сколько существует планет?

Планеты и их спутники:

  1. Меркурий,
  2. Венера,
  3. Земля (спутник Луна),
  4. Марс (спутники Фобос и Деймос),
  5. Юпитер (63 спутника),
  6. Сатурн (49 спутника и кольца),
  7. Уран (27 спутника),
  8. Нептун (13 спутников).
  • Астероиды,
  • Объекты пояса Койпера (Квавар и Иксион),
  • Карликовые планеты (Церера, Плутон, Эрида),
  • Объекты облака Орта (Седна, Оркус),
  • Кометы (комета Галлея),
  • Метеорные тела.

Чем отличается земная группа?

К планетам земной группы традиционно относят Меркурий, Венеру, Землю и Марс (в порядке удаления от Солнца). Орбиты этих четырёх планет расположены до Главного пояса астероидов. Эти планеты объединяют в одну группу также из-за схожести их физических свойств — они имеют небольшие размеры и массы, средняя плотность их в несколько раз превосходит плотность воды, они медленно вращаются вокруг своих осей, у них мало или совсем нет спутников (у Земли — один, у Марса — два, у Меркурия и Венеры — ни одного).

Планеты земного типа или группы отличаются от планет-гигантов меньшими размерами, меньшей массой, большей плотностью, более медленным вращением, гораздо более разрежёнными атмосферами (на Меркурии атмосфера практически отсутствует, поэтому его дневное полушарие сильно накаляется. Температура у планет земной группы значительно выше чем у гигантов (на Венере до плюс 500 С). Элементные составы планет земной группы и планет-гигантов также резко отличаются друг от друга. Юпитер и Сатурн состоят их водорода и гелия примерно в той же пропорции, что и Солнце. У планет земной группы имеется много тяжелых элементов. Земля в основном состоит из железа (35 %), кислорода (29 %) и кремния (15 %). Наиболее распространенные соединения в коре — окислы алюминия и кремния. Таким образом, элементный состав Земли резко отличается от солнечного.

Какие есть планеты-гиганты?

К планетам-гигантам относятся Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают большими размерами, но небольшой плотностью из-за своего газового состава из водорода и гелия. Тем не менее примерно 98 % суммарной массы планет Солнечной системы приходится на массу планет-гигантов!  Тепловой поток из центра Юпитера и Сатурна немного превосходит поток энергии, получаемой планетой от Солнца, тогда как тепловой поток из центра Земли пренебрежимо мал по сравнению с потоком энергии, получаемой Землей от Солнца.Эти планеты удалены на большие расстояния от Солнца, поэтому самые дальние из них — Нептун и Уран, содержат большое количество льда и именуются ледяными гигантами.

Размеры планет солнечной системы

Планеты данного типа обладают большим количеством спутников, в отличие от планет земной группы, и обладают высокой скоростью вращения. Спутниками называются небольшие тела, вращающиеся вокруг планет. Область между планетами наполнена небольшими твердыми частицами и разреженными газами.

Случай «Союз-11 »

Через четыре года произошла еще одна крупная трагедия. Во время возвращения с орбиты корабль «Союз-11» разгерметизировался, и трое космонавтов на его борту — Георгий Добровольский, Владислав Волков и Виктор Пацаев — погибли еще на пути к Земле.

Экипаж космического корабля «Союз-11» в корабле-тренажере. Слева направо: командир корабля Георгий Добровольский, инженер-испытатель Виктор Пацаев и бортинженер Владислав Волков. — Александр Моклецов/Sputnik

Экипаж должен был впервые состыковаться с первой в мире пилотируемой орбитальной станцией «Салют-1». В июне 1971 года они штатно провели стыковку и провели на борту все необходимые работы, после чего получили команду возвращаться на Землю. В отсеках «Союз-11» давление, температура и вся аппаратура были в норме, связь с Землей — устойчивая. Полет протекал хорошо до момента, когда на высоте 150 километров радиосвязь с космонавтами внезапно прервалась.

Однако спускаемый аппарат с экипажем продолжал плановое снижение. Он вошел в плотные слои атмосферы, в расчетное время сработала парашютная система, включились двигатели мягкой посадки — и аппарат приземлился в заданном районе. Когда на место прибыла поисковая группа, то внутри капсулы они обнаружили лежащих в креслах космонавтов без признаков жизни.

Почтовая марка СССР. 1971. Г.Т. Добровольский, В.Н. Волков, В.И. Пацаев

Как выяснилось, на высоте 150 километров от Земли открылся вентиляционный клапан, что отвечает за выравнивание давления внутри аппарата. На самом деле, он должен был открыться на высоте в четыре километра от Земли. Экипаж понял, в чем проблема, и попытался устранить «утечку», но уже через 40 секунд давление внутри корабля упало, космонавты потеряли сознание и вскоре скончались. Спасти их могли скафандры, но «Союз-11» мог вместить до трех космонавтов только в одном случае — если они будут без них.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.