Радиолокация

Алан-э-Дейл       19.05.2023 г.

Оглавление

Радиолокация

В современной технике явление отражения радиоволн различными препятствиями находит широкое применение. Высокочувствительные приемники улавливают и усиливают отраженный сигнал с целью получить информацию о том, где находится тот предмет, от которого отразилась волна.

Обнаружение и точное определение местонахождения объектов с помощью радиоволн называют радиолокацией. Радиолокационная установка — радиолокатор (радар) — состоит из передающей и приемной частей. В радиолокации используют электрические колебания сверхвысокой частоты (СВЧ) (108—1011 Гц). Мощный генератор СВЧ связан с антенной, которая излучает остронаправленную волну. В радиолокаторах, работающих на длинах волн порядка 10 см и меньше, такая волна создается антеннами в виде параболических зеркал. Для волн метрового диапазона антенны имеют вид сложных систем вибраторов. При этом острая направленность излучения получается вследствие интерференции волн. Антенна устроена так, что волны, посланные каждым из вибраторов, при сложении взаимно усиливают друг друга лишь в заданном направлении. В остальных направлениях при сложении волн происходит полное или частичное их взаимное гашение.

Отраженная волна улавливается той же излучающей антенной либо другой, тоже остронаправленной приемной антенной.

Для определения расстояния до цели применяют импульсный режим излучения. Генератор излучает волны кратковременными импульсами. Длительность каждого импульса составляет миллионные доли секунды, а промежуток между импульсами примерно в 1000 раз больше. Во время пауз принимаются отраженные волны.

Определение расстояния R производится путем измерения общего времени t прохождения радиоволн до цели и обратно. Так как скорость радиоволн v = 3•108 м/с — в атмосфере практически постоянна, то

\(~R = \frac {vt}{2}.\)

Вследствие всевозможных потерь радиоволн до приемника доходит лишь ничтожная часть той энергии, которую излучает передатчик. Поэтому приемники радиолокаторов усиливают принятый сигнал в 1012 раз. Такой чувствительный приемник, разумеется, должен быть отключен на время посылки импульса передатчиком.

Для фиксации посланного и отраженного сигналов используют электронно-лучевую трубку. В момент посылки импульса светлая точка, равномерно движущаяся по экрану электронно-лучевой трубки, отклоняется. На экране появляется «всплеск» около нулевой отметки шкалы дальности (рис. 1).

Рис. 1

Светящееся пятнышко на экране продолжает равномерно двигаться вдоль шкалы и в момент приема слабого отраженного сигнала снова отклоняется. Расстояние между «всплесками» на экране пропорционально времени прохождения сигнала и, следовательно, пропорционально расстоянию R до цели. Это позволяет про-градуировать шкалу непосредственно в километрах. Радиолокационные установки обнаруживают корабли и самолеты на расстояниях до нескольких сот километров. На их работу мало влияют условия погоды и время суток. В больших аэропортах локаторы следят за взлетающими и идущими на посадку самолетами. Наземная служба передает по радио пилотам необходимые указания и таким образом обеспечивает безопасность полетов. Корабли и самолеты также снабжены радиолокаторами, служащими для навигационных целей. С помощью локаторов наблюдают метеоры в верхних слоях атмосферы. Локаторы используются службой погоды для наблюдения за облаками. Наконец, локаторы используются в космических исследованиях.

Основные параметры систем

От тактических и технических характеристик оборудования во многом зависит эффективность и качество решаемых задач.

К тактическим показателям РЛС причисляют:

  • Зону обзора, ограниченную минимальной и максимальной дальностью обнаружения цели, допустимым азимутальным углом и углом возвышения.
  • Разрешающую способность по дальности, азимуту, элевации и скорости (возможность определять параметры рядом расположенных целей).
  • Точность измерений, которая измеряется наличием грубых, систематических или случайных ошибок.
  • Помехозащищенность и надежность.
  • Степень автоматизации извлечения и обработки поступающего потока информационных данных.

Заданные тактические характеристики закладываются при проектировании устройств посредством определенных технических параметров, среди которых:

  • несущая частота и модуляция генерируемых колебаний;
  • диаграммы направленности антенн;
  • мощность передающих и принимающих устройств;
  • габаритные размеры и масса системы.

Радиолокация

Совокупность процессов обнаружения и определения местонахождения объектов с помощью радиоволн называют радиолокацией.

Существуют специальные радиолокационные установки или радиолокаторы, которые состоят из передающих и приёмных элементов. В радиолокации применяют электрические колебания сверхвысокой частоты (до 1011 Гц).

Антенна генерирует остронаправленную волну с помощью СВЧ-генератора. Волны метрового порядка представляют собой сложные системы вибраторов. Ориентация волн складывается в результате наложения их друг на друга. Антенна работает так, что волны, генерируемые каждым отдельным вибратором, взаимно усиливают или ослабляют амплитуды

Важно, что усиление наблюдается только в том случае, если направления распространения сигналов совпадают между собой

Улавливается эта совокупность волн такой же остронаправленной антенной. Так как все излучения имеют строгую ориентацию в пространстве, то можно говорить о наличии луча радиолокатора.

Процесс улавливания волн мы поняли. Но как оптимизировать эти знания и научиться рассчитывать расстояние до цели? Для этой задачи применяют импульсный режим излучения. Мы знаем, что передатчик генерирует волны методом кратковременных импульсов. Время существования каждого такого импульса составляет миллионные части секунды. Кроме того, известно, что промежуток между пульсирующими сигналами превышает длительность импульса в 1000 раз. В то время, когда импульс не излучается, приёмник фиксирует только отражённые волны.

Чтобы определить расстояние R между приёмником и излучателем, потребуется измерить общее время прохождения радиоволн туда и обратно. Мы знаем, что скорость распространения волн равна скорости света и составляет 3•108 м/с. Исходя из этого, получим формулу: R=ct/2.

Так как волны рассеиваются в пространстве, то нетрудно догадаться, что до приёмника доходит лишь некоторая часть излучённой энергии. Именно поэтому приёмник не только принимает сигналы, но и усиливает их в миллионы раз (1012).

Чтобы зафиксировать посланные и отражённые сигналы, необходимо воспользоваться электронно-лучевой трубкой.

В то время, когда импульс посылается излучателем, светлая точка на экране электронно-лучевой трубки меняет своё положение. На дисплее фиксируется всплеск около нулевой отметки шкалы дальности, а затем это слабое пятнышко продолжает двигаться равномерно вдоль шкалы. Оно возвращается в первоначальное положение в то время, когда отражённый сигнал достигает приёмника.

Расстояние между всплесками пропорционально времени прохождения импульсов t. Тогда получается, что оно же пропорционально и расстоянию R от приёмника до излучателя.

Как движется радиоволна?

Если бы она двигалась чётко по прямой, то мы могли бы слышать радио только при условии, что радиостанция находилась бы прямо перед нами. Радиосвязь возможна между двумя отдалёнными друг от друга пунктами только за счёт того, что радиоволны могут огибать препятствия (явление дифракции). Степень дифракции зависит от длины волны. Чем она больше, тем огибание сильнее. Поэтому радиосвязь на больших расстояниях возможна лишь в случаях, когда длина волны сигнала превышает 100 м. Короткие волны (10-100 м) могут распространяться на большие расстояния только за счёт повторяющихся отражений от ионизированного слоя и поверхности Земли.

Есть ещё и другие радиоволны, которые называются ультракороткими (их длина волны меньше 10 м). Они проходят через ионосферу и незначительно огибают поверхность планеты. Соответственно, их нельзя использовать для общения на больших расстояниях , поэтому их применяют только в пределах прямой видимости или для связи с комическими кораблями.

Основные параметры систем

От тактических и технических характеристик оборудования во многом зависит эффективность и качество решаемых задач.

К тактическим показателям РЛС причисляют:

  • Зону обзора, ограниченную минимальной и максимальной дальностью обнаружения цели, допустимым азимутальным углом и углом возвышения.
  • Разрешающую способность по дальности, азимуту, элевации и скорости (возможность определять параметры рядом расположенных целей).
  • Точность измерений, которая измеряется наличием грубых, систематических или случайных ошибок.
  • Помехозащищенность и надежность.
  • Степень автоматизации извлечения и обработки поступающего потока информационных данных.

Заданные тактические характеристики закладываются при проектировании устройств посредством определенных технических параметров, среди которых:

  • несущая частота и модуляция генерируемых колебаний;
  • диаграммы направленности антенн;
  • мощность передающих и принимающих устройств;
  • габаритные размеры и масса системы.

Методы и оборудование

Все средства радиолокации по используемому методу разделяют на РЛС непрерывного и импульсного излучения.

Первые содержат в своем составе передатчик и приемник излучения, действующие одновременно и непрерывно. По этому принципу были созданы первые радиолокационные устройства. Примером такой системы могут служить радиоальтиметр (авиационный прибор, определяющий удаление летательного аппарата от поверхности земли) или известный всем автолюбителям радар для определения скоростного режима транспортного средства.

При импульсном методе электромагнитная энергия излучается короткими импульсами в течение нескольких микросекунд. После генерации сигнала станция ведет работу только на прием. После улавливания и регистрации отраженных радиоволн РЛС передает новый импульс и циклы повторяются.

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

импульсные;непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, также она улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления за воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

Литература

  • М. М. Лобанов. Развитие советской радиолокационной техники. — М.: Воениздат, 1982. — 239 с.
  • М. М. Лобанов. Самолётные станции «Гнейс-2», ПНБ и «Гнейс-5» // Начало советской радиолокации. — М.: Советское радио, 1975. — 288 с.
  • Bowen, Edward George. Radar Days. — CRC Press, 1998. — ISBN 9780750305860.
  • Parker, Dana T. Building Victory: Aircraft Manufacturing in the Los Angeles Area in World War II. — Cypress, CA, 2013. — ISBN 978-0-9897906-0-4.
  • Galati, Gaspare. 100 Years of Radar. — Springer, 2021. — ISBN 978-3-319-00583-6.
  • Holpp, Wolfgang. The Century of Radar. — EADS Deutschland GmbH, 2000.

Как работает радиолокатор

Определение местонахождения чего-либо называют локацией. Для этого в технике применяют устройство, называемое локатором. Локатор излучает какой-либо вид энергии, например, звук или оптический сигнал, в сторону предполагаемого объекта, а затем принимает отражённый от него сигнал. Радиолокатор использует для этой цели радиоволны.

На самом деле радиолокатор, или радиолокационная станция (РЛС), — сложная система. Конструкции различных радиолокаторов могут различаться, но принцип их работы одинаков. Радиопередатчик посылает в пространство радиоволны. Достигнув цели, они отражаются от неё, как от зеркала, и возвращаются назад. Такая радиолокация называется активной.

Основные узлы радиолокатора (РЛС) – передатчик, антенна, антенный переключатель, приёмник, индикатор.

По способу излучения радиоволн РЛС делятся на импульсные и непрерывного действия.

Как работает импульсная радиолокационная станция?

Передатчик радиоволн включается на короткое время, поэтому радиоволны излучаются импульсами. Они поступают в антенну, которая располагается в фокусе зеркала параболоидной формы. Это нужно для того, чтобы радиоволны распространялись в определённом направлении. Работа радиолокатора похожа на работу светового прожектора, лучи которого подобным образом направляются в небо и, освещая его, ищут нужный объект. Но работа прожектора этим и ограничивается. А радиолокатор не только посылает радиоволны, но и принимает сигнал, отражённый от найденного объекта (радиоэхо). Эту функцию выполняет приёмник.

Антенна импульсного радиолокатора работает то на передачу, то на приём. Для этого в ней есть переключатель. Как только радиосигнал послан, отключается передатчик и включается приёмник. Наступает пауза, во время которой радиолокатор как бы «слушает» эфир и ждёт радиоэхо. И как только антенна улавливает отражённый сигнал, тут же отключается приёмник и включается передатчик. И так далее. Причём время паузы может во много раз превышать длительность импульса. Таким образом излучаемый и принимаемый сигнал разделяются во времени.

Принятый радиосигнал усиливается и обрабатывается. На индикаторе, который в простейшем случае представляет собой дисплей, отображается обработанная информация, например, размеры объекта или расстояние до него, или сама цель и окружающая её обстановка.

Радиоволны распространяются в пространстве со скоростью света. Поэтому, зная время tот излучения импульса радиосигнала до его возвращения, можно определить расстояние до объекта.

R = t/2,

где с – скорость света.

Радиолокатор непрерывного действия высокочастотные радиоволны излучает непрерывно. Поэтому антенной улавливается также непрерывный отражённый сигнал. В своей работе такие РЛС используют эффект Доплера. Суть этого эффекта в том, что частота сигнала, отражённого от объекта, движущегося по направлению к радиолокатору, выше частоты сигнала, отражённого от объекта, удаляющегося от него, несмотря на то, что частота излучаемого сигнала постоянна. Поэтому такие РЛС используют для определения параметров движущегося объекта. Пример радиолокатора, в основе работы которого лежит эффект Доплера – радар, используемый сотрудниками ГИБДД для определения скорости движущегося автомобиля.

В поисках объекта направленный луч антенны РЛС сканирует пространство, описывая полный круг, либо выбирая определённый сектор. Он может быть направлен по винтовой линии, по спирали. Обзор также может быть коническим или линейным. Всё зависит от задачи, которую он должен выполнить.

Если необходимо постоянно следить за выбранной движущейся целью, антенна радиолокатора всё время направлена на неё и поворачивается вслед за ней с помощью специальных следящих систем.

Связь с другими отраслями науки

Основным фактором, ограничивающим технические характеристики локаторов, является малая мощность принимаемого сигнала. При этом мощность принимаемого сигнала убывает как четвёртая степень дальности (то есть, чтобы увеличить дальность действия локатора в 10 раз нужно увеличить мощность передатчика в 10000 раз). Естественно, на этом пути быстро пришли к пределам, преодолеть которые было далеко не просто. Уже в самом начале развития был осознан тот факт, что имеет значение не сама мощность принимаемого сигнала, а его заметность на фоне шумов приёмника. Снижение шумов приёмника также было ограничено естественными шумами элементов приёмника, например тепловыми. Данный тупик был преодолён на пути усложнения методов обработки принятого сигнала и связанного с этим усложнения формы применяемых сигналов. Развитие радиолокации как научной отрасли знаний шло одновременно с развитием кибернетики и теории информации, и потребовались бы специальные исследования, чтобы решить, где именно были получены первые результаты. Следует отметить появление понятия сигнала, который позволил отвлечься от конкретных физических процессов в приёмнике, таких как напряжение и ток, и позволил решать стоящие проблемы как математическую задачу о поиске наилучших функциональных преобразованиях функций времени.

Одной из первых работ в этой области была работа В. А. Котельникова об оптимальном приёме сигнала, то есть наилучшем в условии шумов методе обработки сигнала. В результате было доказано, что качество приёма зависит не от мощности сигнала, а от его энергии, то есть произведения мощности на время, таким образом, появилась доказанная возможность увеличения дальности действия за счёт увеличения длительности сигналов, в пределе до непрерывного излучения. Значительным шагом вперед стало отчётливое применение в технике методов статистической теории решений (критерий Неймана-Пирсона) и принятие того факта, что исправное устройство может работать с определённой долей вероятности. Для того, чтобы радиолокационный сигнал при большой длительности позволял измерять дальность и скорость с высокой точностью, потребовались сложные сигналы, в отличие от простых радиолокационных импульсов, изменяющие какие-либо характеристики в процессе генерации. Так. сигналы с линейной частотной модуляцией изменяют частоту колебаний в течение одного импульса, сигналы с фазовой манипуляцией скачкообразно изменяют фазу сигнала, обычно на 180 градусов. При создании сложных сигналов было сформулировано понятие функции неопределённости сигнала, показывающей связь точности измерений дальности и скорости. Необходимость повышения точности измерения параметров стимулировало развитие различных методов фильтрации результатов измерений, например, методов оптимальной нелинейной фильтрации, которые явились обобщением фильтра Калмана на нелинейные задачи. В итоге всех этих разработок теоретическая радиолокация оформилась как самостоятельная сильно математизированная отрасль знаний, в которой значительную роль имеют формализованные методы синтеза, то есть проектирование ведётся в известной мере «на кончике пера».

Радиоастрономия

Посланные с поверхности земли радиоволны также отражаются от объектов в ближнем и дальнем космосе, как и от околоземных целей. Многие космические объекты невозможно было полноценно исследовать лишь с использованием оптических инструментов, и только применение радиолокационных методов в астрономии позволило получить богатую информацию об их природе и структуре. Впервые пассивная радиолокация для исследования Луны была применена американскими и венгерскими астрономами в 1946 году. Примерно в то же время были случайно приняты и радиосигналы из космического пространства.

У современных радиотелескопов приемная антенна имеет форму большой вогнутой сферической чаши (подобно зеркалу оптического рефлектора). Чем больше ее диаметр, тем более слабый сигнал антенна сможет принять. Часто радиотелескопы работают комплексно, объединяя не только устройства, расположенные недалеко друг от друга, но и находящиеся на разных континентах. Среди важнейших задач современной радиоастрономии — изучение пульсаров и галактик с активными ядрами, исследование межзвездной среды.

Основные факторы

Основными моментами в противостоянии с авиацией были:

  • Применение для скрытия самолётов и вертолётов пассивных маскирующих помех в виде распыляемых в воздухе кусочков фольги, отражающей радиоволны. Ответом на это было внедрение в радиолокаторах систем селекции движущихся целей, которая на основе доплеровского эффекта отличает движущиеся самолёты от сравнительно неподвижной фольги.
  • Развитие технологий построения самолётов и кораблей, уменьшающих мощность отражённого назад к радиолокатору сигналов, получивших название Стелс. Для этого служат и специальные поглощающие покрытия, и специальная форма, отражающая падающую радиоволну не назад, а в другом направлении.

На боевом посту

Радиолокация — это универсальный инструмент, получивший широкое распространение в военной сфере, науке и народном хозяйстве. Области использования неуклонно расширяются благодаря развитию и совершенствованию технических средств и технологий измерений.

Применение радиолокации в военной отрасли позволяет решить важные задачи обзора и контроля пространства, обнаружения воздушных, наземных и водных мобильных целей. Без радаров невозможно представить оборудование, служащее для информационного обеспечения навигационных систем и систем управления орудийным огнем.

Военная радиолокация является базовой составляющей стратегической системы предупреждения о ракетном нападении и комплексной противоракетной обороны.

Импульсные радарные системы

Антенны радаров фокусируют электромагнитные сигналы и направляют их, а также улавливают отраженные импульсы и передают его в приемники. В некоторых радиолокаторах прием-передача сигналов могут производиться с помощью разных антенн, находящихся одна от другой на больших расстояниях. Антенны радаров могут производить излучение электромагнитных волн по кругу или действовать в определенных секторах.

Одним из основных недостатков в работе импульсных радаров являются помехи, идущие от недвижимых объектов, от земной поверхности, гор, холмов. Так, бортовые импульсные радары в процессе их функционирования в самолетах будут принимать затенения от сигналов, отраженных земной поверхностью. Наземные или судовые радиолокационные комплексы выявляют эти проблемы в процессе обнаружения целей, которые летят на малых высотах. Для устранения таких помех пользуются эффектом Доплера.

Где используется радиолокация?

С помощью локаторов наблюдают за полётами самолётов. Диспетчеры, которые сидят в зданиях аэропортов, связываются с пилотами по радио.

На кораблях устанавливаются аналогичные радиолокаторы, которые используются в качестве навигаторов. Они воссоздают картину расположения объектов, улавливая рассеивающиеся радиоволны.

Выбери ответ

Классы

  • 11 класс
  • 10 класс
  • 9 класс
  • 8 класс
  • 7 класс
  • 6 класс
  • 5 класс
  • 4 класс
  • 3 класс
  • 2 класс
  • 1 класс

Предметы

  • Русский
  • Общество
  • История
  • Математика
  • Физика
  • Литература
  • Английский
  • Информатика
  • Химия
  • Биология
  • География

Онлайн-школы

  • Умскул
  • Учи Дома
  • Фоксфорд
  • Тетрика
  • Skypro

Репетиторы по предметам

  • Русский
  • Общество
  • История
  • Математика
  • Физика
  • Литература
  • Английский
  • Информатика
  • Химия
  • Биология

Куда поступать?

  • 10 лучших московских ВУЗов, о которых надо знать
  • Рейтинг самых эффективных факультетов российских ВУЗов
  • 10 критериев выбора ВУЗа и факультета
  • Скидки на оплату обучения в ВУЗах Москвы
  • Рейтинг самых востребованных ВУЗов для экономистов
  • Сравнение ведущих технических ВУЗов России

Алгоритм определения дальности и направления

Скорость распространения электромагнитных волн в атмосфере составляет 300 тыс. км/с. Поэтому, зная время, затраченное транслируемым сигналом на преодоление расстояния от станции до цели и обратно, легко вычислить удаленность объекта. Для этого необходимо точно зафиксировать время отправки импульса и момент принятия отраженного сигнала.

Для получения информации о местонахождении цели используется остронаправленная радиолокация. Определение азимута и элевации (угла места или возвышения) объекта производится антенной с узким лучом. Современные РЛС используют для этого фазированные антенные решетки (ФАР), способные задавать более узкий луч и отличающиеся высокой скоростью вращения. Как правило, процесс сканирования пространства совершается минимум двумя лучами.

* * *

Появлением радиолокации можно считать рубеж XIX— XX веков. И по сути, этой области наук чуть больше века, но столь стремительное её развитие привело нас к тому, что мы уже не можем даже и представить своё существование без неё в нашем повседневном быту, что уж говорить о её военном значении. С развитием общества человеческие потребности растут всё больше. Следовательно, перед радиолокацией появляются новые задачи и новые направления, а значит, и усовершенствование методов, оборудования системы радиолокации. Не скоро к данной области будет потерян интерес, который подогревается и научным прогрессом, с одной стороны, и коммерческой заинтересованностью, с другой.

Становление радиолокации в Российской Империи и в СССР

В преддверии и во время Первой Мировой войны главные усилия российских радиоинженеров прикладывались к развитию и усовершенствованию радиоразведки за врагом. Для этого проводились определённые мероприятия по сбору сведений о радиосвязи иностранных государств. Ещё в 1914 г. нашим соотечественником, лейтенантом Балтийского флота И.И. Ренгартеном, проводились работы по макетированию радиопеленгатора.

Иван Иванович Ренгартен

В самом начале войны командованием Балтийского флота было принято решение об установке в Кильконде на о. Эзель первого разведывательного радиопеленгатора (РРП). Идею этого РРП предложил И. Ренгартен, им же была разработана и его конструкция. Береговой РРП системы Ренгартена имел антенну зонтичного типа, состоящую из 16 или 32 лучей-радиусов, ориентированных на местности согласно компасным румбам, почему иногда именовался компасной радиостанцией, или радиостанцией компасного типа. Радиопеленгатор в Кильконде начал решать радиоразведывательные задачи.

В СССР идеи радиолокации продвигал с 1932 г. научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков, позднее предложивший использовать импульсное излучение. Идея овладела военными, и 16 января 1934 г. в Ленинградском физико-техническом институте (ЛФТИ) под председательством академика А.Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолётов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях.

Виды радиолокации

Природа электромагнитного излучения цели позволяет говорить о нескольких видах радиолокации:

  • Пассивная радиолокация исследует собственное излучение (тепловое, электромагнитное и т.п.), которое генерирует цели (ракеты, самолеты, космические объекты).
  • Активная с активным ответом осуществляется в случае, если объект оборудован собственным передатчиком и взаимодействие с ним происходит по алгори.
  • Активная с пассивным ответом предполагает исследование вторичного (отраженного) радиосигнала. Радиолокационная станция в этом случае состоит из передатчика и приемника.
  • Полуактивная радиолокация — это частный случай активной, в случае когда приемник отраженного излучения расположен вне РЛС (например, является конструктивным элементом самонаводящейся ракеты).

Каждому виду свойственны свои достоинства и недостатки.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.