Ускорение свободного падения на меркурии. конвертер величин

Алан-э-Дейл       16.11.2023 г.

Оглавление

Mgh формула — формула A=mgh, вот m- масса, h- высота а вот что такое g объясните по простому!!! — 22 ответа



M g h

22 ответа

Привет! Вот подборка тем с ответами на Ваш вопрос: формула A=mgh, вот m- масса, h- высота а вот что такое g объясните по простому!!!

Ответ от Недосолускорение свободного падения

Ответ от КЕДИНУскорение свободного падения =9,8м/сек2

Ответ от Лера Кухареваg- коэффициент равный примерно 10H/кг (решаю с этим значением)

Ответ от Евровидениеускарение свободного подения

2 ответа

Привет! Вот еще темы с нужными ответами:

Потенциальная энергия на ВикипедииПосмотрите статью на википедии про Потенциальная энергия

Председатели комитетов и постоянных комиссий Совета Федерации на ВикипедииПосмотрите статью на википедии про Председатели комитетов и постоянных комиссий Совета Федерации

Атмосфера и температура

Из-за близости к Солнцу планета слишком сильно прогревается, поэтому не способна сберечь атмосферу. Но ученые отметили тонкий слой переменной экзосферы, представленной водородом, кислородом, гелием, натрием, водяным паром и калием. Общий уровень давления приближается к отметке 10-14 бар.

Северный полюс планеты, запечатленный аппаратом MESSENGER. Красным цветом отмечены участки в тени, а желтый – лед

Без атмосферного слоя солнечное тепло не накапливается, поэтому на Меркурии отмечают серьезные температурные колебания: на солнечной стороне – 427°С, а на темной опускается до -173°С.

Однако поверхность располагает водяным льдом и органическими молекулами. Дело в том, что полюсные кратеры отличаются глубиной и туда не попадают прямые солнечные лучи. Полагают, что на дне можно обнаружить 1014 – 1015 кг льда. Пока нет точных данных о том, откуда на планете взялся лед, но это может быть подарок от упавших комет или же он происходит из-за дегазации воды от внутренней планетарной части.

Сколько существует космических скоростей?

Сила гравитации Земли и нашего Солнца несоизмеримы. Поэтому скорости, с которой возможно вылететь на орбиту планеты и покинуть звездную систему, разные.

Астродинамика выделяет 5 типов космических скоростей:

  • Первая (орбитальная, круговая) – позволяет покинуть планету, но объект будет двигаться по ее круговой орбите как спутник;
  • Вторая (параболическая) – позволяет вырваться в звездную систему, преодолев гравитацию планеты, объект движется по параболической орбите;
  • Третья (гиперболическая) – позволяет покинуть систему, преодолев гравитацию планеты и звезды;
  • Четвертая – объект покидает галактику;
  • Пятая – позволяет долететь по планеты другой звёздной системы, независимо от расположения планет в галактике.

Первая космическая скорость позволяет преодолеть силу притяжения планеты. Если аппарат будет лететь с меньшей скоростью, рано или поздно он упадет. Это минимальная скорость, которую должны развивать ракеты, при выходе на орбиту. При этом взлетают они вертикально только первые 100 км. Затем ракета наклоняется и летит практически горизонтально планете. И только преодолевая высоту 150–200 км, она набирает космическую скорость.Получается, что ракета летит по круговой траектории. Поэтому второе название первой космической скорости – круговая или орбитальная. Для Земли она составляет 7900 м/с.

Орбитальная станция

При второй космической скорости объект будет двигаться по параболической траектории, т.к. сила тяготения звезды продолжает действовать, и он становится уже ее спутником. Для Земли и Солнца минимальный порог составляет 11200 м/с. Впервые эту скорость развил советский аппарат “Луна-1”. Вторую космическую еще называют скоростью ускорения, т.к. объекту необходимо преодолеть максимальный порог первой скорости, иначе он не сможет покинуть орбиту планеты. При этом траектория движения аппарата будет иметь эллиптическую орбиту разной степени вытянутости, как у комет.

На третьей космической скорости, чтобы обойти гравитацию звезды, аппарат должен двигаться по гиперболической траектории. Для Земли она составляет 46900 м/с. Впервые ее достиг аппарат “Новые горизонты” (НАСА, США) в 2006 г., добавив недостающие 4 км/м скорости возле Юпитера. В 2015 г. достиг Плутона. На 2021 г. аппарат удалился от Солнца на 50 астрономических единиц и продолжает исследовать глубокий космос.

Четвертая космическая скорость позволяет покинуть галактику. На текущий момент вычислить скорость для Млечного пути не представляется возможным, т.к. невозможно рассчитать его гравитационный потенциал. Эта величина не постоянная для всех точек галактики и зависит от места их расположения, в том числе и на определенный момент времени

Важно отметить, что нужны данные и по расположению масс второй галактики, куда будет осуществлен полет. Но ученые предполагают, что значение четвертой космической скорости в районе Солнца около 550 000 м/с.

Галактика Андромеды

Пятая космическая скорость упоминается реже, т.к

межгалактические планетарные полеты пока не доступны. Но если рассмотреть космическую скорость, которую летательный аппарат должен развить с нашей планеты до другой с вертикальной траекторией, то внутри солнечной системы она примерно составит 43600 м/с.

Образование планеты

Наиболее вероятным описанием происхождения Меркурия считается небулярная гипотеза, согласно которой планета в прошлом была спутником Венеры, а затем по какой-то причине вышла из-под воздействия ее гравитационного поля. По другой версии Меркурий сформировался одновременно со всеми объектами Солнечной системы во внутренней части протопланетного диска, откуда легкие элементы уже были отнесены солнечным ветром во внешние области.

По одной из версий происхождения очень тяжелого внутреннего ядра Меркурия – теории гигантского столкновения – масса планеты первоначально была в 2,25 раз больше нынешней. Однако после столкновения с небольшой протопланетой или похожим на планету объектом большая часть коры и верхнего слоя мантии рассеялась в космосе, а ядро стало составлять значительную часть от массы планеты. Такая же гипотеза используется и для объяснения происхождения Луны.

После завершения основного этапа формирования 4,6 млрд. лет назад Меркурий долгое время интенсивно обстреливался кометами и астероидами, потому его поверхность испещрена множеством кратеров. Бурная вулканическая активность на заре истории Меркурия привела к образованию лавовых равнин и «морей» внутри кратеров. По мере того, как планета постепенно остывала и сжималась, рождались другие детали рельефа: хребты, горы, холмы и уступы.

Физические параметры Меркурия

Год на Меркурии длится 88 земных суток. В виду близости к Солнцу, дневное полушарие, сильно раскаляется, а другое полушарие в это время находится в космическом холоде. Отсутствие атмосферы не позволяет компенсировать разницу температур, поэтому на Меркурии экстремальные условия. Благодаря большому эксцентриситету, наряду с отсутствием существенной атмосферы, присутствует самый широкий разброс экстремальных температур в Солнечной системе от 700 К до 90 К. 

Наука утверждает, что концентрация железа в ядре Меркурия выше, чем у любой другой планеты Солнечной системы. «Судя по очень высокой средней плотности Меркурия (5.44 г/см3), ядро занимает до 50% объема планеты и доходит до 75-80% ее радиуса» .

Высокая плотность планеты, которая не характерна для аналогичных по размеру и происхождению небесных тел. Такая картина не вяжется близостью Меркурия к Солнцу. Как оно могло «допустить», что на ранней стадии возникновения планетообразования, не притянуло к себе тяжелые вещества протооблака.

На мой взгляд, плотность Меркурия вычислена не верно, она явно завышена, отсюда и неверный вывод, что Меркурий железная планета. Обычно Меркурий сравнивают с Марсом, у обеих планет одинаковая сила тяжести, но Марс превосходит Меркурий по объему в 2.7 раза, а его масса превосходит меркурианскую только в 1,9 раза. Особенно контрастное сравнение Меркурия со спутниками Юпитера и Сатурна. Титан, спутник Сатурна, по размерам превосходит планету, но плотность Меркурия превосходит титановую почти в 3 раза! Это, я считаю, очередное безобразие. (О Титане поговорим несколько позднее, когда приблизимся к Сатурну), а сейчас определимся с плотностью Меркурия.

Физические параметры .

R=57,91 млн. км (5,791·1010м) – среднее расстояние от Солнца

v=47,36 км/с (47360м/с) – орбитальная скорость,

r=2,43937·106 м – радиус,

m=3,33022·1023кг – масса,

V=6,083·1010 км3 – объем,

ρ=5427 кг/м3 – плотность,

g=3,7 м/с2 – ускорение св. падения,

Θ=348 К (75О C) – средняя температура под поверхностью

Найдем энергетический коэффициент GM для Меркурия, как отношение его средней температуры к максимально возможной температуре.

                                                                                    (1)

Найдем массу Меркурия через ускорение свободного падения.

                                (2)

Отсюда плотность

ρ=M/V=2,793965·1023/6,083·1019 м3=4593 кг/м3                                                  (3)

Для сравнительного анализа сведем вновь полученные физические параметры и справочные параметры Меркурия в таблицу.

Таблица 

Меркурий

Масса, М (кг)

Энергетический коэффициент, GM

Ускорение своб. падения, g (м/с2)

Плотность, ρ (кг/м3)

Параметры новые

2,7939·1023

7,9228·10-11

3,72

4593

Параметры

справочные

3,33022·1023

G (Нм2/кг2)

6,67·10-11

3,72

5427

Смещение перигелия Меркурия в очередной раз доказывает, что закон всемирного тяготения нарушается, т.к. это частный закон для одной температуры взаимодействующих тел. Гравитационная постоянная – не постоянная, она растет с увеличением температуры гравитирующих тел. Из-за нее неправильно вычислена масса и плотность планеты, которые явно преувеличены.

Источники
  1. Википедия, Смещение перигелия Меркурия, / URL: https://goo.gl/yH1Nv3
  2. Ершов Г.Д., Закон всемирного тяготения, Гравитация / URL: http://gennady-ershov.ru/g/zakon-vsemirnogo-tyagoteniya.html#more-2040
  3. Роузвер Н.Т., Перигелий Меркурия от Леверье до Эйнштейна, пер. с англ. Расторгуева А.С., Мир, М. 1985
  4. NASA, MESSENGER / URL: http://solarsystem.nasa.gov/galleries/ready-to-move
  5. Ершов Г.Д., Гравитационная постоянная – величина переменная, Гравитация / URL: http://gennady-ershov.ru/g/gravitacionnaya-postoyannaya-velichina-peremennaya.html
  6. Hecht Jeff, Science: Fiery future for planet Earth, New Scientist, 1994 / URL: https://www.newscientist.com/article/mg14219191-900-science-fiery-future-for-planet-earth/
  7. Neal Adams — Science: 01 — Conspiracy: Earth is Growing! / URL: https://www.youtube.com/watch?v=oJfBSc6e7QQ
  8. Шаров П., Меркурий — планета ближайшая к Солнцу, Меркурий / http://galspace.spb.ru/index175-1.html
  9. Меркурий, Википедия, https://vk.cc/5jUbG8

Назад Вперед

Состав и поверхность

Состав Меркурия на 70% представлен металлическим и на 30% силикатным материалам. Считают, что его ядро охватывает примерно 42% всего объема планеты (у Земли – 17%). Внутри располагается ядро из расплавленного железа, вокруг которого сосредоточен силикатный слой (500-700 км). Поверхностный слой – кора с толщиной в 100-300 км. На поверхности можно заметить огромное количество хребтов, которые тянутся на километры.

По сравнению с другими планетами Солнечной системы, ядро Меркурия обладает наибольшим количеством железа. Полагают, что раньше Меркурий был намного больше. Но из-за удара с крупным объектом внешние слои разрушились, оставив главное тело.

Некоторые считают, что планета могла появиться в протопланетном диске до того, как солнечная энергия стала стабильной. Тогда он должен быть вдвое массивнее современного состояния. При нагреве в 25000-35000 К большая часть породы могла просто испариться. Изучите строение Меркурия на фото.

Внутренняя структура Меркурия представлена корой, мантией и ядром

Есть и еще одно предположение. Солнечная туманность могла привести к увеличению частичек, которые набросились на планету. Тогда более легкие отошли и не использовались при создании Меркурия.

Если смотреть издалека, то планета напоминает земной спутник. Такой же кратерный ландшафт с равнинами и следами лавовых потоков. Но здесь отмечено большее разнообразие элементов.

Опытный таролог ответит на вопросы:

Что ждёт Вас в будущем? Как сложатся отношения? Какое решение — верное?

Меркурий сформировался 4.6 миллиардов лет назад и попал под обстрел целой армии астероидов и мусорных осколков. Атмосферы не было, поэтому удары оставили заметные следы. Но планета оставалась активной, так что лавовые потоки создали равнины.

Улучшенные изображения кратеров Манч, Сандер и По среди вулканических равнин (оранжевые), недалеко от бассейна Калори

Размеры кратеров варьируются от небольших ям до бассейнов с шириною в сотни километров. Самый крупный – Калорис (равнина Жары) с диаметром в 1550 км. Удар был настолько сильным, что привел к лавовому извержению на противоположной планетарной стороне. А сам кратер окружен концентрическим кольцом высотой в 2 км. На поверхности можно отыскать примерно 15 крупных кратерных образований. Внимательно рассмотрите схему магнитного поля Меркурия.

Магнитное поле Меркурия

Планета обладает глобальным магнитным полем, достигающем 1.1% земной силы. Возможно, что источником служит динамо, напоминая нашу Землю. Оно образуется благодаря вращению жидкого ядра, наполненного железом.

Этого поля хватает, чтобы противостоять звездные ветра и формировать магнитосферный слой. Его силы достаточно, чтобы удерживать плазму из ветра, из-за чего происходит поверхностное выветривание.

Размер, масса и орбита

При радиусе в 2440 км и массе 3.3022 х 1023 кг Меркурий считается самой маленькой планетой в Солнечной системе. По размеру достигает всего 0.38 земного. Также уступает по параметрам некоторым спутникам, но по плотности стоит на втором месте после Земли – 5.427 г/см3. На нижнем фото указано сравнение размеров Меркурия и Земли.

Сравнение Меркурия и Земли

Это обладатель самой эксцентричной орбиты. Удаленность Меркурия от Солнца может колебаться от 46 миллионов км (перигелий) до 70 миллионов км (афелий). От этого могут меняться и ближайшие планеты. Средняя орбитальная скорость равна – 47322 км/с, поэтому на прохождения орбитального пути уходит 87.969 дней. Ниже представлена табличка характеристик планеты Меркурий.

Экваториальный радиус 2439,7 км
Полярный радиус 2439,7 км
Средний радиус 2439,7 км
Окружность большого круга 15 329,1 км
Площадь поверхности 7,48·107 км²
0,147 земной
Объём 6,083·1010 км³
0,056 земного
Масса 3,33·1023 кг
0,055 земной
Средняя плотность 5,427 г/см³
0,984 земной
Ускорение свободного

падения на экваторе

3,7 м/с²
0,377 g
Первая космическая скорость 3,1 км/с
Вторая космическая скорость 4,25 км/с
Экваториальная скорость

вращения

10,892 км/ч
Период вращения 58,646 дней
Наклон оси 2,11′ ± 0,1′
Прямое восхождение

северного полюса

18 ч 44 мин 2 с
281,01°
Склонение северного полюса 61,45°
Альбедо 0,142 (Бонд)
0,068 (геом.)
Видимая звёздная величина от −2,6m до 5,7m
Угловой диаметр 4,5″ – 13″

Скорость оборота оси составляет 10.892 км/ч, поэтому сутки на Меркурии длятся 58.646 дней. Это говорит о том, что планета находится в резонансе 3:2 (3 осевых вращения на 2 орбитальных).

Эксцентричность и замедленность вращения приводят к тому, что планета тратит 176 дней на то, чтобы вернуться в изначальную точку. Так что один день на планете вдвое длиннее года. Также это обладатель наиболее низкого осевого наклона – 0.027 градусов.

Перигелий 46 001 009 км
0,38709927 а. е.
Афелий 69 817 445 км
0,46670079 а. е.
Большая полуось 57 909 227 км
0,38709927 а. е.
Эксцентриситет

орбиты

0,20563593
Сидерический период

обращения

87,969 дней
Синодический период

обращения

115,88 дней
Орбитальная скорость 47,36 км/с
Средняя аномалия 174,795884°
Наклонение 7,00° относительно плоскости эклиптики
3,38° относительно солнечного экватора
6,34° отн. инвариантной плоскости
Долгота восходящего узла 48,33167°
Аргумент перицентра 29,124279°

Исследования Меркурия

Конечно же, первым навел свой телескоп на Меркурий любопытный Галилео Галилей, и было это еще в начале XVII века. Но телескоп его был слишком слабым, чтобы что-то увидеть.

7 ноября 1631 года Пьер Гассенди воспользовался вычислениями Кеплера и пронаблюдал прохождение Меркурия по диску Солнца. Вскоре наблюдались фазы планеты и было доказано, что Меркурий вращается вокруг Солнца.

В 1737 году английский астроном Джон Бевис наблюдал редчайшее явление – покрытие Меркурия Венерой. Такое случается раз в несколько столетий, и в следующий раз будет 3 декабря 2133 года.

В дальнейшем астрономы много раз пытались изучать эту планету – вычислили период обращения и даже пытались составить карту. Но телескопические наблюдения Меркурия очень сложны, и данных было очень мало.

Кстати, даже телескоп Хаббл никогда не использовался для изучения Меркурия – яркое Солнце неподалёку может повредить чувствительную аппаратуру.

Радиоастрономические наблюдения Меркурия дали немало полезной информации – была измерена температура в разных точках, построена карта некоторых участков.

Больше всего информации о планете получено с помощью автоматических зондов, хотя организовать их полёт к Меркурию гораздо сложнее, чем к внешним планетам, например, к Марсу.

Первым около Меркурия в 1974-1975 годах трижды пролетел «Маринер-10». Он сблизился с планетой до 320 километров и сделал множество детальных фотографий, что позволило составить подробную карту почти половины Меркурия. Этот зонд передал множество ценной информации.

Схема полета «Маринер-10»

Второй аппарат «Месенджер» стартовал в 2004 году, а облетел планету в первый раз в 2008 году. После серии маневров около Венеры и Земли аппарат в 2011 году вышел на орбиту около Меркурия. Этот аппарат находился на орбите и исследовал планету до 2015 года, а затем упал на поверхность, оставив на месте падения кратер размером в 15 метров.

На этом снимке, сделанном «Мессенджером», показаны места расположения льда на полюсе и вблизи него.

Сейчас около Меркурия нет никаких земных аппаратов, да и было их за всю историю всего два. Но в20 октября 2018 года стартовала миссия BepiColombo, которая достигнет Меркурия в 2025 году. Столько много времени требуется для маневров около Венеры, Земли и Меркурия, чтобы погасить скорость и затем выйти на орбиту.

Наблюдение Венеры[править | править код]

Вид с Землиправить | править код

Венеру легко распознать, так как по блеску она намного превосходит самые яркие из звёзд. Отличительным признаком планеты является её ровный белый цвет. Венера, так же, как и Меркурий, не отходит на небе на большое расстояние от Солнца. В моменты элонгаций Венера может удалиться от нашей звезды максимум на 48°. Как и у Меркурия, у Венеры есть периоды утренней и вечерней видимости: в древности считали, что утренняя и вечерняя Венеры — разные звёзды. Венера — третий по яркости объект на нашем небе. В периоды видимости её блеск в максимуме около m = −4,4.
В телескоп, даже небольшой, можно без труда увидеть и пронаблюдать изменение видимой фазы диска планеты. Их впервые наблюдал в году Галилей. Атмосферу на Венере открыл М. В. Ломоносов 6 июня г. (по новому стилю).

Прохождение по диску Солнцаправить | править код

Венера на диске солнца

Так как Венера является внутренней планетой по отношению к Земле, земной наблюдатель может наблюдать её прохождение по диску Солнца, когда при виде с Земли в телескоп её можно видеть в виде маленького чёрного диска. Однако, это явление является одним из самых редких в Солнечной системе. Примерно в течение двух с половиной столетий случается четыре прохождения — два декабрьских и два июньских. Ближайшее произойдёт 6 июня 2012 года.
Впервые наблюдал прохождение Венеры по диску Солнца 4 декабря 1639 года английский астроном Джеримайя Хоррокс (—) Он же это явление предвычислил.
Особый интерес для науки представляли наблюдения «явления Венеры на Солнце», которые сделал М. В. Ломоносов 6 июня 1761 года

Это прохождение наблюдалось во всём мире, но только Ломоносов обратил внимание на то, что при соприкосновении Венеры с диском Солнца вокруг планеты возникло «тонкое, как волос, сияние». Такой же светлый ореол наблюдался и при схождении Венеры с солнечного диска.
Ломоносов дал правильное научное объяснение этому явлению, считая его результатом преломления солнечных лучей в атмосфере Венеры

«Планета Венера — писал он,— окружена знатной воздушной атмосферой, таковой (лишь бы не большею), какова обливается около нашего шара земного». Так впервые в истории астрономии, ещё за сто лет до открытия спектрального анализа, было положено начало физическому изучению планет. В то время о планетах Солнечной системы почти ничего не было известно. Поэтому наличие атмосферы на Венере Ломоносов рассматривал как неоспоримое доказательство сходства планет и, в частности, сходства между Венерой и Землёй.

Ускорение и транспортные средства

Тесты на ускорение для автомобилей

Существует ряд тестов для измерения характеристик автомобилей. Один из них направлен на то, чтобы проверить их ускорение. Для этого измеряют время, за которое автомобиль разгоняется с 0 до 100 километров (62 мили) в час. В странах, где не используют метрическую систему, проверяют разгон с нуля до 60 миль (97 километров) в час. Машины с самым быстрым разгоном доходят до этой скорости примерно за 2,3 секунды, что меньше, чем время, за которое тело достигнет такой скорости в свободном падении. Существуют даже программы для мобильных телефонов, которые помогают вычислить это время разгона, используя встроенные акселерометры телефона. Впрочем, трудно сказать насколько точны такие вычисления.

Влияние ускорения на людей

Ускорение

При движении автомобиля с ускорением пассажиров тянет в сторону, противоположную движению и ускорению. То есть, назад — при ускорении, и вперед — при торможении. При резких остановках, например во время столкновения, пассажиров так резко дергает вперед, что они могут вылететь из сидений и удариться об обшивку автомобиля или окна. Вероятно даже, что они разобьют своим весом стекло и вылетят из машины. Именно из-за этой опасности во многих странах были приняты законы о том, чтобы во всех новых автомобилях должны быть установлены ремни безопасности. Во многих странах также было законодательно закреплено требование о том, что водитель, все дети, и, по крайней мере, пассажир на переднем сидении обязаны пристегиваться ремнями безопасности во время движения.

Космические аппараты во время выхода на орбиту Земли двигаются с большим ускорением. Возвращение на Землю, наоборот, сопровождается резким замедлением. Это не только вызывает у космонавтов дискомфорт, но и опасно, поэтому они проходят интенсивный курс тренировок перед тем, как отправляться в космос. Такие тренировки помогают космонавтам легче переносить перегрузки связанные с высоким ускорением. Пилоты скоростных самолетов также проходят эту тренировку, так как эти самолеты достигают высокого ускорения. Без тренировки резкое ускорение вызывает отток крови от мозга и потерю цветного зрения, потом — бокового, затем — зрения вообще, а дальше — потерю сознания. Это опасно, так как пилоты и космонавты не могут в таком состоянии управлять самолетом или космическим аппаратом. Пока тренировки на перегрузки не стали обязательным требованием в подготовке пилотов и космонавтов, перегрузки с высоким ускорением иногда заканчивались авариями и смертью пилотов. Тренировки помогают предотвратить потерю сознания и позволяют пилотам и космонавтам переносить большое ускорение в течение более продолжительного времени.

Внутри кабины космического аппарата «Аполлон» CM-011A на борту авианосца «Хорнет» (USS Hornet CV-12)

Кроме тренировок в центрифуге, описанных ниже, космонавтов и пилотов обучают специальному приему сокращения мышц живота. При этом кровеносные сосуды сужаются и меньше крови попадает в нижнюю часть тела. Предотвратить отток крови из мозга во время ускорения помогают также противоперегрузочные костюмы, так как встроенные в них специальные подушки наполнены воздухом или водой и давят на живот и ноги. Эти приемы предотвращают отток крови механически, в то время как тренировки в центрифуге помогают человеку повысить выносливость и привыкание к высокому ускорению. Сама центрифуга представляет собой горизонтальную трубу с кабиной на одном конце трубы. Она вращается в горизонтальной плоскости и создает условия с большим ускорением. Кабина снабжена карданным подвесом и может вращаться в разных направлениях, обеспечивая дополнительную нагрузку. Во время тренировок на космонавтах или пилотах надеты датчики и врачи следят за их показателями, например за пульсом. Это необходимо для обеспечения безопасности, а также помогает следить за адаптацией людей. В центрифуге можно имитировать как ускорение в нормальных условиях, так и баллистическое вхождение в атмосферу при авариях. Космонавты, которые проходят подготовку на центрифуге, говорят, что испытывают при этом сильный дискомфорт в груди и в горле.

Автор статьи: Kateryna Yuri

Орбита Меркурия

Вращение Меркурия вокруг звезды происходит по орбите в форме сильно вытянутого эллипса. В афелии планета удалена от Солнца на 70 млн. км, а перигелии – на 46 млн. км. Соответственно, в фазе афелия она 1,5 раза дальше от звезды, чем в фазе перигелия.

Период обращения равняется 88 земным суткам. Долгое время исследователи считали, что у Меркурия нет осевого вращения. В результате проведенной в 1960-х годов радиолокации установили, что он совершает 1,5 оборота вокруг оси за один оборот вокруг Солнца. Ни у одной из планет Солнечной системы нет данного соотношения периодов вращения. Ввиду этого солнечные меркурианские сутки длятся 2 года.

Меркурий вращается на орбите со скоростью 48 км/с. Осевое вращение Меркурия происходит с постоянной скоростью, тогда как при вращении вокруг Солнца скорость меняется. В течение 8 суток на участке перигелия угловая скорость орбитального движения превышает таковую для осевого — 56,6 км/с в перигелии, 38,7 км/с в афелии. Солнце будто останавливается, а затем начинает двигаться не на запад, а на восток. Астрономы назвали это явление эффектом Иисуса Навина, персонажа в Библии, который предсказал остановку Солнца.

Смена времен года, аналогичная земной, на Меркурии не происходит. Это объясняется расположением оси собственного вращения под углом в 90° к плоскости орбиты. Поэтому в области полюсов есть зоны, на которые солнечные лучи падают горизонтально. В этих областях наблюдается вечная зима.

Исследование планеты

До момента первого полета беспилотных аппаратов мы многого не знали о морфологических характеристиках. Первым к Меркурию отправился Маринер в 1974-1975 гг. Он трижды приблизился и сделал ряд масштабных фото.

Космический аппарат НАСА Маринер-10, который в 1970-х гг. исследовал Венеру и Меркурий

Но аппарат обладал длительным орбитальным периодом, поэтому при каждом приближении подходил к одной и той же стороне. Так что карта составляла лишь 45% всей площади.

При первом сближении удалось зафиксировать магнитное поле. Последующие подходы показали, что оно сильно напоминает земное, отклоняющее звездные ветры.

В 1975 году у аппарата кончилось топливо, и мы потеряли связь. Однако Маринер-10 и сейчас может вращаться вокруг Солнца и наведываться к Меркурию.

Вторым посланником стал MESSENGER. Он должен был разобраться в плотности, магнитном поле, геологии, структуре ядра и атмосферных особенностях. Для этого установили специальные камеры, гарантирующие высшее разрешение, а спектрометры отмечали составляющие элементы.

Аппарат MESSENGER вращается вокруг Меркурия с марта 2011 года

MESSENGER стартовал в 2004 году и выполнил три пролета с 2008 года, компенсировав упущенную Маринером-10 территорию. В 2011 году он перешел на эллиптическую планетарную орбиту и начал снимать поверхность.

После этого стартовала следующая годичная миссия. Последний маневр пришелся на 24 апреля 2015 года. После этого закончилось топливо, и 30 апреля спутник разбился об поверхность.

В 2016 году ЕКА и JAXA объединились для создания BepiColombo, который должен добраться к планете в 2024 году. У него есть два зонда, которые будут изучать магнитосферу, а также поверхность во всех длинах волн.

Расширенное изображение Меркурия, созданное на основе снимков камер MESSENGER

Меркурий – интересная планета, раздираемая крайностями и противоречиями. Обладает расплавленной поверхностью и льдом, нет атмосферы, зато присутствует магнитосфера. Мы надеемся, что будущие технологии позволят узнать больше интригующих подробностей. Обязательно рассмотрите, как выглядит современная карта поверхности Меркурия в высоком разрешении.

Зачем может понадобится колонизация Меркурия?

С другой стороны – запасы (правда все ещё гипотетические) того же гелия-3, а также кобальта, урана, тория и других редких в наших условиях, но вполне типичных для Меркурия элементов, по всей вероятности сделают эту планету желанной целью в далеком будущем.

Кроме того, как уже говорилось – интерес представляют не только полезные ископаемые первой планеты, но и использование её поверхности как площадки для сбора солнечной энергии. Дело в том, что получая её в практически любых объемах, можно использовать её не только “местно”, но и для передачи во внешнюю часть Солнечной системы. Подсчитано, что с помощью направленного “экспорта” солнечной энергии можно разогреть “ледяной мир” – спутник Нептуна Тритон до температуры Земли за какие-то 200 лет. А ещё одна мечта фантастов – “солнечные парусники” получат, наконец, источник энергии сколь угодно большой мощности, к тому же всегда стабильный и никогда не иссякающий.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.